skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Shweta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract Highly effective electromagnetic (EM) wave absorber materials with strong reflection loss (RL) and a wide absorption bandwidth (EBW) in gigahertz (GHz) frequencies are crucial for advanced wireless applications and portable electronics. Traditional microwave absorbers lack magnetic loss and struggle with impedance matching, while ferrites are stable, exhibit excellent magnetic and dielectric losses, and offer better impedance matching. However, achieving the desired EBW in ferrites remains a challenge, necessitating further composition design. In this study, impedance matching is successfully enhanced and EBW in Ni–Zn ferrite is broadened by successive doping with Mn and Co , without incorporation of any polymer filler. It is found that Ni0.4Co0.1Zn0.5Fe1.9Mn0.1O4material exhibits exceptional EM wave absorption, with a maximum RL of −48.7 dB. It also featured a significant EBW of 10.8 GHz, maintaining a 90% absorption rate (RL < −10 dB) for a thickness of 4.5 mm. These outstanding properties result from substantial magnetic losses and favorable impedance matching. These findings represent a significant step forward in the development of microwave absorber materials, addressing EM wave pollution concerns within GHz frequencies, including the frequency band used in popular 5G technology. 
    more » « less
  3. Titanium is one of the most abundant elements in the earth’s crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream. 
    more » « less